Integration scheme of nanoscale resistive switching memory using bottom-up processes at room temperature for high-density memory applications
نویسندگان
چکیده
A facile and versatile scheme is demonstrated to fabricate nanoscale resistive switching memory devices that exhibit reliable bipolar switching behavior. A solution process is used to synthesize the copper oxide layer into 250-nm via-holes that had been patterned in Si wafers. Direct bottom-up filling of copper oxide can facilitate fabrication of nanoscale memory devices without using vacuum deposition and etching processes. In addition, all materials and processes are CMOS compatible, and especially, the devices can be fabricated at room temperature. Nanoscale memory devices synthesized on wafers having 250-nm via-holes showed reproducible resistive switching programmable memory characteristics with reasonable endurance and data retention properties. This integration strategy provides a solution to overcome the scaling limit of current memory device fabrication methods.
منابع مشابه
Self-assembled nanostructured resistive switching memory devices fabricated by templated bottom-up growth
Metal-oxide-based resistive switching memory device has been studied intensively due to its potential to satisfy the requirements of next-generation memory devices. Active research has been done on the materials and device structures of resistive switching memory devices that meet the requirements of high density, fast switching speed, and reliable data storage. In this study, resistive switchi...
متن کاملEnhanced resistive switching phenomena using low-positive-voltage format and self-compliance IrOx/GdOx/W cross-point memories
Enhanced resistive switching phenomena of IrOx/GdOx/W cross-point memory devices have been observed as compared to the via-hole devices. The as-deposited Gd2O3 films with a thickness of approximately 15 nm show polycrystalline that is observed using high-resolution transmission electron microscope. Via-hole memory device shows bipolar resistive switching phenomena with a large formation voltage...
متن کاملInfluence of the surface roughness of the bottom electrode on the resistive-switching characteristics of Al/Al2O3/Al and Al/Al2O3/W structures fabricated on glass at 300 °C
Resistive-switching devices based on Metal–Insulator–Metal (MIM) structures have shown promising memory performance characteristics while enabling higher density of integration. Usually, these MIM devices are fabricated using different processing conditions including high temperature thermal treatments that could lead to undesirable chemical reactions in the insulator material and at its interf...
متن کاملInvestigation of resistive switching in anodized titanium dioxide thin films
In this work, TiO2 nanostructures were grown on titanium thin films by electrochemical anodizing method. The bipolar resistive switching effect has been observed in Pt/TiO2/Ti device. Resistive switching characteristics indicated the TiO2 nanotubes are one of the potential materials for nonvolatile memory applications. Increasing anodizing duration will increase nanotube lengths which itself c...
متن کاملEffect of non-lattice oxygen on ZrO2-based resistive switching memory
ZrO2-based resistive switching memory has attracted much attention according to its possible application in the next-generation nonvolatile memory. The Al/ZrO2/Pt resistive switching memory with bipolar resistive switching behavior is revealed in this work. The thickness of the ZrO2 film is only 20 nm. The device yield improved by the non-lattice oxygen existing in the ZrO2 film deposited at ro...
متن کامل